\oint Tangent Bundle
Motivation: ${ }^{P} M^{m} \subseteq \mathbb{R}^{m+k}$ submanifold

$$
T_{p} M:=\left\{v \in \mathbb{R}^{m+k} \left\lvert\, \begin{array}{l}
\exists \operatorname{smosth} c:(-\varepsilon, \varepsilon) \rightarrow M \pm+1 \\
c(0)=p, c(0)=v
\end{array}\right.\right\}
$$

Note: $T_{p} M$ is an m-dimil subspace in \mathbb{R}^{m+k} Two ways to describe this subspace:
(1) locally. $M=f^{-1}(0)$ for some $f: u \in \mathbb{R}^{m+k} \rightarrow \mathbb{R}^{k}$

$$
\Rightarrow T_{p} M=\operatorname{ker}\left(d f_{p}\right) . \quad \operatorname{dim}=(m+k)-k=m
$$

(2) locally, parametrization $g: w \subseteq \mathbb{R}^{m} \rightarrow M \subseteq \mathbb{R}^{m+k}$

$$
\Rightarrow \quad T_{p} M=d g_{x}\left(\mathbb{R}^{m}\right) \quad \operatorname{dim}=m
$$

Q: How to define $T_{P} M$ in the setting of abstract manifolds?
Def": Let $p \in M$. Given curves $C_{i}: I_{i} \rightarrow M, i=1,2$, where $I_{1}, I_{2} \subseteq \mathbb{R}$ open intervals containing 0 st $C_{1}(0)=P=C_{2}(0)$.

$$
\xlongequal[\substack{\phi \cdot c_{1} \\ T_{\phi \cdot c_{2}}^{d}(p)}]{\mathbb{R}^{m}}
$$

We say $c_{1} \sim C_{2}$ of $\exists \operatorname{chart}(U, \phi)$ around p s.t.

$$
T_{p} M:=\{[c] \mid c: \stackrel{\stackrel{\circ}{\Phi}}{I} \rightarrow M \text { curve st. } c(0)=p\}
$$

Remark: - TM m-dimil (abstract) vector space.
*. The relation \sim above is "chart-independent".

$$
V=d_{x}\left(\phi_{2} \cdot \phi_{1}^{-1}\right)(u)
$$

Def n: $T M:=\frac{11}{p \in M} T_{p} M=\left\{(p, v): p \in M, v \in T_{p} M\right\}$.
Tangent Bundle disjoint union of M

Thu: TM is a smooth manifold (of dim $=2 \cdot \operatorname{dim} M$)
"Why?" Describe the local charts for TM.

$$
\left(c(0), " c^{\prime}(0)\right)=(p, v) \in T M
$$

local
word

Transition maps:

$$
\begin{aligned}
\left(\phi_{1} \cdot c\right. & \left.(0),\left(\phi_{1} \cdot c\right)^{\prime}(0)\right)
\end{aligned} \underset{\alpha\left(\phi_{2} \cdot \phi_{1}^{-1}\right)_{\phi_{1}(\cdot)} \text { smooth }}{\left(\phi_{2} \cdot c(0),\left(\phi_{2} \cdot c\right)^{\prime}(0)\right)}
$$

§ Vector Bundles

Def: A vector bundle (of rank n) consists of a map (total space) (base space)

$$
\pi: E \rightarrow B
$$

Notation:

$$
\begin{aligned}
\mathbb{R}^{n} \rightarrow & E \\
& \downarrow \pi \\
& B
\end{aligned}
$$

(2) \exists open cover $\left\{U_{i}\right\}_{i \in I}$ of B and \exists differ $h_{i}: \pi^{-1}\left(u_{i}\right) \stackrel{\cong}{\rightrightarrows} u_{i} \times \mathbb{R}^{n}$
local
trivializations s.t. $h_{i}\left(\pi^{-1}(x)\right)=\{x\} \times \mathbb{R}^{n}$
(3) The "transition maps" $h_{i} \cdot h_{j}^{-1}:\left(u_{i} \cap u_{j}\right) \times \mathbb{R}^{n} \stackrel{\tilde{g}}{\leftrightarrows}\left(u_{i} \cap u_{j}\right) \times \mathbb{R}^{n}$ are diffeomonphions of the form:

$$
h_{i} \cdot h_{j}^{-1}(x, v)=\left(x, g_{i j}(x) \cdot v\right)
$$

where $g_{i j}: U_{i} \cap U_{j} \rightarrow G L(n, \mathbb{R})$ smooth $(\operatorname{in} x)$.
Picture:

Examples: (i) $M \times \mathbb{R}^{n}$ "trivial bundle"
(ii) $T M$ is a rank m vector bundle, where $m=\operatorname{dim} M$.
$\mathbb{R}^{m} \rightarrow T M \underset{\left(p, v^{[i]}\right)}{ } \quad$ local trivialization

$M \Rightarrow P$
$\left\{\left(u_{i}, \phi_{i}\right)\right\}$ chart on M

$$
\begin{aligned}
h_{i}: \pi^{-1}\left(u_{i}\right) & \cong u_{i} \times \mathbb{R}^{n} \\
(p, v) & \longmapsto\left(\phi_{i}(p)^{\psi},\left(\phi_{i} \cdot c\right)^{\prime}(0)\right) \\
g_{i j}(x) & \underset{\phi_{i}(x)}{ }\left(\phi_{j} \cdot \phi_{i}^{-1}\right) \in G L(n, \mathbb{R})
\end{aligned}
$$

(of rank n)
Def: A vector bundle $\pi: E \rightarrow B$ is trivial
if \exists differ $h: E \xrightarrow{\cong} B \times \mathbb{R}^{n}$ s.t. it is fibernise linear isomorphism, ie $h: \pi^{-1}(x) \xrightarrow{\rightrightarrows}\{x\} \times \mathbb{R}^{n}$.

Def": A smooth map $S: B \rightarrow E$ is called a section of the vector bundle $\pi: E \rightarrow B$ if $\pi \cdot S=i d_{B}$.

Egg: $E=B \times \mathbb{R}^{n}$
A section $S: B \rightarrow \mathbb{R}^{n}$
is a vector-valued function
§ Vector Fields on manifolds
Let M^{m} be a smooth m-manifold, tangent bundle TM.
Def": A vector field on M is just a section $X: M \rightarrow T M$ of the tangent bundle TM.

Notation: $T(T M):=\{$ sections of $T M\}(\infty-d i n ' l$ vector space $)$

Def n: (Pushfomward of tangent vectors)
Given smooth map $f: M \rightarrow N$, and $p \in M$. then \exists a linear map. differential of f at p.

$$
d f_{p}: T_{p} M \longrightarrow T_{f(p)} N
$$

defined by $d f_{p}\left(C^{\prime}(0)\right)=(f \circ c)^{\prime}(0)$ where $c: I \rightarrow M, C(0)=p$

Note: $d f_{p}$ is indep. of the choice of c representing $v \in T_{p} M$
Chain Rule:

$$
d(g \cdot f)_{p}=d g_{f(p)} \cdot d f_{p}
$$

$$
M \xrightarrow[g \cdot f]{\stackrel{f}{\longrightarrow}} N \stackrel{g}{\longrightarrow} p \quad T_{p} M \underset{d g_{f(p)} \cdot d f_{p} .}{\xrightarrow{d f_{p}} T_{f(p)} N \xrightarrow{d g_{f(p)}} T_{g(f(p))} p}
$$

Digression: Vector Fields on \mathbb{S}^{n}.
$\mathbb{S}^{n} \subseteq \mathbb{R}^{n+1}$ (unit sphere centered at 0)

$$
\begin{aligned}
T \mathbb{S}^{n} & =\left\{(p, v) \in \mathbb{S}^{n} \times \mathbb{R}^{n+1} \mid\langle p, v\rangle_{\mathbb{R}^{n+1}}=0\right\} \\
T\left(T \mathbb{S}^{n}\right) & =\left\{X: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n+1} \operatorname{smosth} \mid\langle p, X(p)\rangle=0 \quad \forall p \in \mathbb{S}^{n}\right\}
\end{aligned}
$$

Thu: TM trivial $\Leftrightarrow \exists \mathrm{m}$ linearly indep. vector fields on M.
Def: M is parallelizable if $T M$ is trivial.

Hard Thu 1 : All closed orientable 3-manifolds are parallelizable.
Hard Tun 2: \mathbb{S}^{n} is parallelizable of $n=1,3$ and 7
The: (Higher dim' ℓ "Hairy Ball Theorem") $\quad S^{2} \times \mathbb{R}^{3} \approx$ Any $x \in P\left(T S^{n}\right)$ must vanish somewhere when n is even

Remarks: Thu $\Rightarrow T S^{n}$ is NoT trivial when n is even - $n=2$ follows from Poincaie-Hopf Thu:

$$
\sum_{\substack{p \in M \\ X(p)=0}} \text { index } X(p)=x\left(\mathbb{S}^{2}\right)=2 \neq 0
$$

Sketch of Proof ($n \geqslant 4$. Minor)
Suppose \exists nowhere vanishing vector field X on \mathbb{S}^{n}. WLOG. normalized to $\|X\| \equiv 1$.
Define $f: S^{n}(1) \cong S^{n}\left(\sqrt{1+\varepsilon^{2}}\right)$ differ

$$
\begin{aligned}
& x \longmapsto x+\varepsilon X(x) \\
& \left.d V_{0}\right|_{\mathbb{R}^{n+1}}=d x^{0} \wedge \cdots \wedge d x^{n}=\frac{1}{n+1} d \omega \\
& \text { where } \omega:=\sum_{i=0}^{n}(-1)^{i} x^{i} d x^{0} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n}
\end{aligned}
$$

(n-1) form on \mathbb{R}^{n+1}
§ Vector Fields as "derivations"
$X \in P(T M) \quad$ locally in word $\quad X\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{m} X^{i}\left(x_{1}, \ldots, x_{m}\right) \frac{\partial}{\partial x^{i}}$

Egg.) In \mathbb{R}^{2}.

write: $x(x, y)=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$
Let $f(x, y)=x y$.

$$
X(f)=-y \frac{\partial f}{\partial x}+x \frac{\partial f}{\partial y}=-y^{2}+x^{2}
$$

Note, $X: f \mapsto X(f)$
IDEA: X acts on smooth functions $C^{\infty}(M)$ by directional derivative Notation: $C^{\infty}(M):=\{f: M \rightarrow \mathbb{R}$ smooth $\}$.

$$
\text { Diff }(M):=\{\varphi: M \rightarrow M \text { differ. }\} \text {. }
$$

Given $\quad X \in P(T M), f \in C^{\infty}(M), p \in M$.

$$
X(f)(p):=\left.\sum_{i=1}^{m} X^{i}(0) \frac{\partial f}{\partial x^{i}}\right|_{0} \quad \text { for any local word. } \quad \underset{x^{\prime} \ldots, x^{m}}{ } \text { st } p=0 .
$$

Consider all points $p \in M$.

$$
\begin{aligned}
P(T M) \ni X: C^{\infty}(M) & \longrightarrow C^{\infty}(M) \\
\psi & \longmapsto \\
f & \longmapsto X(f)
\end{aligned}
$$

Prop: The map above is a derivation. ie. $\forall a \cdot b \in \mathbb{R}, f, g \in C^{\infty}(m)$,
(1) "Lineanty": $X(a f+b g)=a X(f)+b X(g)$
(2) "Liebniz Rule": $X(f g)=g \cdot X(f)+f \cdot X(g)$

FACT: $\left\{\begin{array}{c}\text { vector fields } \\ \text { on } M\end{array}\right\} \underset{\text { cor. }}{\stackrel{1-1}{\leftrightarrows}}\left\{\begin{array}{c}\text { derivations } \\ \text { on } M\end{array}\right\}$
Def": (Lie bracket) Let $X, Y \in P(T M)$.

$$
[X, Y]:=X Y-Y X \in T(T M)
$$

ie. $[X, Y](f):=X(Y(f))-Y(X(f))$
Properties of $[\because \cdot]$
(i) $[X, Y]=-[Y, X]$
(ii) $[0 \cdot]$ is \mathbb{R}-linear in each slot
(iii) (Jacobi identity) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$

Caution: $[\cdot \cdot]$ is defined only using the smooth stricture on M.
§ Flow and integral cures of vector fields
Let $X \in P(T M)$. Consider the following I.U.P.

$$
\left\{\begin{array}{l}
C_{p}^{\prime}(t)=X\left(C_{p}(t)\right) \quad \forall t \in I \\
C_{p}(0)=p
\end{array}\right.
$$

O.D.E. $\Rightarrow \exists$ unique sol $!c_{p}(t): I_{p}^{0} \rightarrow M$ that depends smoothly on the initial data $C(0)=P$

Fir $X=x^{2} \frac{\partial}{\partial x}$

Thu: If $X \in P(T M)$ is compactly supported, then the maps

$$
\begin{aligned}
\phi_{t}: M & \longrightarrow \underset{\sim}{M} \\
\stackrel{\rightharpoonup}{4} & \text { is a differ. for each } t \in \mathbb{R} .
\end{aligned}
$$

Moreover. $\phi_{t} \circ \phi_{s}=\phi_{t+s} \quad \forall t, s \in \mathbb{R}$.
ie. $\left\{\phi_{t}\right\}_{t \in \mathbb{R}} \subseteq D_{i} f f(M)$ forms a 1-parameter group Called the flow generated by X.

Remarks: . If X not aptly supported, we can still define maps locally.

- Any $\phi \in \operatorname{Diff}^{\prime}(M)$ induces a pushforwerd map

$$
\phi_{*}: T(T M) \rightarrow T(T M)
$$

by the differential $d \phi_{p}: T_{p} M \rightarrow T_{\phi(p)} M$ at each $p \in M$.
Thu: Let $X, Y \in T(T M)$. aptly supported.
Suppose $\left\{\phi_{t}\right\}_{t \in R}$ is the flow generated by Y.
Then.

$$
[X, Y]=\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t}\right)_{*} X\left(=:-\mathcal{L}_{Y} X\right)
$$

