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Remark Tpm on dim't abstract vector Space

The relation above is chart independent
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Vector Bundles

Def A vector bundle of rank m consists of a map
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Examples cis Mx IR trivial bundle
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Vector Fields on manifolds

Let Mmbe a smooth M manifold tangent bundle TM

Def A vector field on M is just a section X M TM
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Def't Pushforward of tangentvectors
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Vector Fields as derivations
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FACT vectorfunds fderionatimons
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